12-14 sept. 2012 Grenoble (France)
Vendredi 14
Exposés
Exposés
› 11:15 - 11:45 (30min)
Geometric inference from noisy data
Quentin Mérigot  1, *  
1 : Laboratoire Jean Kuntzmann  (LJK)  -  Site web
CNRS : UMR5224, Université Joseph Fourier - Grenoble I, Université Pierre Mendès-France - Grenoble II, Institut Polytechnique de Grenoble
Tour IRMA 51 rue des Mathématiques - 53 38041 GRENOBLE CEDEX 9 -  France
* : Auteur correspondant

Geometric inference deals with the estimation of geometric and topological quantities (e.g. curvature, Betti numbers, etc.) of a geometric object from a discrete sampling. This question appears naturally when dealing with data obtained by probing a geometric object.  In this talk, we will show how a recently introduces notion of distance function to a probability measure can be used (among other applications) to recover the topology of a surface embedded in an Euclidean space from a finite sampling, even if the sampling is corrupted with outliers. We will also discuss some computational issues related to this question. (Common work with Chazal - Cohen-Steiner and Guibas - Morozov).


Personnes connectées : 1